Skip to contents

Data cube creation

Usage

dcc6(
  .data,
  .variables,
  .funs_list = list(n = ~dplyr::n()),
  .total = "Totale",
  order_type = extract_unique4,
  .all = TRUE
)

dcc6_fixed(
  .data,
  .variables,
  .funs_list = list(n = ~dplyr::n()),
  .total = "Totale",
  order_type = extract_unique5,
  .all = TRUE,
  fixed_variable = NULL
)

Arguments

.data

data frame to be processed.

.variables

variables to split data frame by, as a character vector (c("var1", "var2")).

.funs_list

a list of function calls in the form of right-hand formula.

.total

character string with the name to give to the subset of data that includes all the observations of a variable (default: "Totale").

order_type

a function like extract_unique or extract_unique2.

.all

logical, indicating if functions have to be evaluated on the complete dataset.

fixed_variable

name of the variable for which you do not want to estimate the total

Examples

dcc6(
  invented_wages,
  .variables = c("gender", "sector"), 
  .funs_list = list(n = ~dplyr::n()),
  .all = TRUE
)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%
#> # A tibble: 9 × 3
#>   gender sector        n
#> * <fct>  <fct>     <int>
#> 1 Totale Totale     1000
#> 2 Totale secondary   455
#> 3 Totale tertiary    545
#> 4 men    Totale      547
#> 5 men    secondary   289
#> 6 men    tertiary    258
#> 7 women  Totale      453
#> 8 women  secondary   166
#> 9 women  tertiary    287
     
dcc6(
  invented_wages,
  .variables = c("gender", "sector"), 
  .funs_list = list(n = ~dplyr::n()),
  .all = FALSE
)
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%
#> # A tibble: 8 × 3
#>   gender sector        n
#>   <fct>  <fct>     <int>
#> 1 Totale secondary   455
#> 2 Totale tertiary    545
#> 3 men    Totale      547
#> 4 men    secondary   289
#> 5 men    tertiary    258
#> 6 women  Totale      453
#> 7 women  secondary   166
#> 8 women  tertiary    287